Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Frigid Zone Medicine ; 2(4):251-256, 2022.
Artigo em Inglês | Academic Search Complete | ID: covidwho-2162844

RESUMO

Patients with coronavirus disease 2019 (COVID-19) have high resource utilization. Identifying the causes of severe COVID-19 is helpful for early intervention to reduce the consumption of medical resources. We included 103 patients with COVID-19 in this single-center observational study. To evaluate the incidence, predictors, and effects of COVID-19, we analyzed demographic information, laboratory results, comorbidities, and vital signs as factors for association with severe COVID-19. The incidence of severe COVID-19 was 16.5% and the percent poor outcome (including mortality, entering in ICU or transferred to a superior hospital) was 6.8%. The majority of severe COVID-19 patients had abnormal electrocardiogram (ECG) (82.35%), hypertension (76.47%) and other cardiac diseases (58.82%). Multivariate logistic regression was used to determine the predictors of severe illness. Abnormal body mass index (BMI) and ECG (P < 0.05) were independent predictors of severe COVID-19. ECG abnormality was associated with increased odds of poor outcome (area under the receiver operating characteristic curves [AUC], 0.793;P = 0.010) and severe COVID-19 (AUC, 0.807;P < 0.0001). Overweight was also associated with increased odds of poor outcome (AUC, 0.728;P = 0.045) and severe illness COVID-19 (AUC, 0.816;P < 0.0001). Overweight and electrophysiological disorders on admission are important predictors of prognosis of patients with COVID-19. [ FROM AUTHOR]

2.
Front Cardiovasc Med ; 9: 916156, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1993774

RESUMO

Introduction: Cardiovascular events are common in COVID-19. While the use of anticoagulation during hospitalization has been established in current guidelines, recommendations regarding antithrombotic therapy in the post-discharge period are conflicting. Methods: To investigate this issue, we conducted a retrospective follow-up (393 ± 87 days) of 1,746 consecutive patients, hospitalized with and surviving COVID-19 pneumonia at a single tertiary medical center between April and December 2020. Survivors received either 30-day post-discharge antithrombotic treatment regime using prophylactic direct oral anticoagulation (DOAC; n = 1,002) or dipyridamole (n = 304), or, no post-discharge antithrombotic treatment (Ctrl; n = 440). All-cause mortality, as well as cardiovascular mortality (CVM) and further cardiovascular outcomes (CVO) resulting in hospitalization due to pulmonary embolism (PE), myocardial infarction (MI) and stroke were investigated during the follow-up period. Results: While no major bleeding events occured during follow-up in the treatment groups, Ctrl showed a high but evenly distributed rate all-cause mortality. All-cause mortality (CVM) was attenuated by prophylactic DOAC (0.6%, P < 0.001) and dipyridamole (0.7%, P < 0.001). This effect was also evident for both therapies after propensity score analyses using weighted binary logistic regression [DOAC: B = -3.33 (0.60), P < 0.001 and dipyridamole: B = -3.04 (0.76), P < 0.001]. While both treatment groups displayed a reduced rate of CVM [DOAC: B = -2.69 (0.74), P < 0.001 and dipyridamole: B = -17.95 (0.37), P < 0.001], the effect in the DOAC group was driven by reduction of both PE [B-3.12 (1.42), P = 0.012] and stroke [B = -3.08 (1.23), P = 0.028]. Dipyridamole significantly reduced rates of PE alone [B = -17.05 (1.01), P < 0.001]. Conclusion: Late cardiovascular events and all-cause mortality were high in the year following hospitalization for COVID-19. Application of prophylactic DOAC or dipyridamole in the early post-discharge period improved mid- and long-term CVO and all-cause mortality in COVID-19 survivors.

3.
Front Med (Lausanne) ; 9: 906665, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1933708

RESUMO

Aims: While COVID-19 affects the cardiovascular system, the potential clinical impact of cardiovascular biomarkers on predicting outcomes in COVID-19 patients is still unknown. Therefore, to investigate this issue we analyzed the prognostic potential of cardiac biomarkers on in-hospital and long-term post-discharge mortality of patients with COVID-19 pneumonia. Methods: Serum soluble ST2, VCAM-1, and hs-TnI were evaluated upon admission in 280 consecutive patients hospitalized with COVID-19-associated pneumonia in a single, tertiary care center. Patient clinical and laboratory characteristics and the concentration of biomarkers were correlated with in-hospital [Hospital stay: 11 days (10; 14)] and post-discharge all-cause mortality at 1 year follow-up [FU: 354 days (342; 361)]. Results: 11 patients died while hospitalized for COVID-19 (3.9%), and 11 patients died during the 1-year post-discharge follow-up period (n = 11, 4.1%). Using multivariate analysis, VCAM-1 was shown to predict mortality during the hospital period (HR 1.081, CI 95% 1.035;1.129, p = 0.017), but not ST2 or hs-TnI. In contrast, during one-year FU post hospital discharge, ST2 (HR 1.006, 95% CI 1.002;1.009, p < 0.001) and hs-TnI (HR 1.362, 95% CI 1.050;1.766, p = 0.024) predicted mortality, although not VCAM-1. Conclusion: In patients hospitalized with Covid-19 pneumonia, elevated levels of VCAM-1 at admission were associated with in-hospital mortality, while ST2 and hs-TnI might predict post-discharge mortality in long term follow-up.

4.
Curr Drug Targets ; 22(16): 1832-1843, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1511929

RESUMO

ACE2 has long been known as an injury protective protein, which can protect against a variety of organ damage such as the heart, liver, kidney, and lung. Especially in cardiovascular diseases, as a negative regulator of RAAS, ACE2 is an extremely important protective factor that mainly plays a role by converting Ang II to Ang-(1-7). Nevertheless, with the recent outbreak of COVID-19, it is exposed that another identity of ACE2 is the entry receptor for SARS-CoV-2, which previously serves as the entry receptor for SARS. With the in-depth clinical research, it is found that the severity and susceptibility of COVID-19 are related to cardiovascular diseases, and SARS-CoV-2 binding to ACE2 receptor is also potentially associated with heart injury symptoms. Therefore, in this article, we mainly summarize the relationship between ACE2, COVID-19, and cardiovascular diseases/heart injury.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Doenças Cardiovasculares , Traumatismos Cardíacos , COVID-19/patologia , Doenças Cardiovasculares/virologia , Traumatismos Cardíacos/virologia , Humanos
5.
PLoS One ; 16(10): e0257982, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1468163

RESUMO

BACKGROUND: J-waves represent a common finding in routine ECGs (5-6%) and are closely linked to ventricular tachycardias. While arrhythmias and non-specific ECG alterations are a frequent finding in COVID-19, an analysis of J-wave incidence in acute COVID-19 is lacking. METHODS: A total of 386 patients consecutively, hospitalized due to acute COVID-19 pneumonia were included in this retrospective analysis. Admission ECGs were analyzed, screened for J-waves and correlated to clinical characteristics and 28-day mortality. RESULTS: J-waves were present in 12.2% of patients. Factors associated with the presence of J-waves were old age, female sex, a history of stroke and/or heart failure, high CRP levels as well as a high BMI. Mortality rates were significantly higher in patients with J-waves in the admission ECG compared to the non-J-wave cohort (J-wave: 14.9% vs. non-J-wave 3.8%, p = 0.001). After adjusting for confounders using a multivariable cox regression model, the incidence of J-waves was an independent predictor of mortality at 28-days (OR 2.76 95% CI: 1.15-6.63; p = 0.023). J-waves disappeared or declined in 36.4% of COVID-19 survivors with available ECGs for 6-8 months follow-up. CONCLUSION: J-waves are frequently and often transiently found in the admission ECG of patients hospitalized with acute COVID-19. Furthermore, they seem to be an independent predictor of 28-day mortality.


Assuntos
Arritmias Cardíacas/fisiopatologia , COVID-19/fisiopatologia , Taquicardia Ventricular/fisiopatologia , Idoso , Arritmias Cardíacas/mortalidade , COVID-19/mortalidade , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taquicardia Ventricular/mortalidade
6.
Engineering (Beijing) ; 6(10): 1185-1191, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-747430

RESUMO

No therapeutics have been proven effective yet for the treatment of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To assess the efficacy and safety of Triazavirin therapy for COVID-19, we conducted a randomized, double-blinded controlled trial involving hospitalized adult patients with COVID-19. Participants were enrolled from ten sites, and were randomized into two arms of the study with a ratio of 1:1. Patients were treated with Triazavirin 250 mg versus a placebo three or four times a day for 7 d. The primary outcome was set as the time to clinical improvement, defined as normalization of body temperature, respiratory rate, oxygen saturation, cough, and absorption of pulmonary infection by chest computed tomography (CT) until 28 d after randomization. Secondary outcomes included individual components of the primary outcome, the mean time and proportion of inflammatory absorption in the lung, and the conversion rate to a repeated negative SARS-CoV-2 nucleic acid test of throat swab sampling. Concomitant therapeutic treatments, adverse events, and serious adverse events were recorded. Our study was halted after the recruitment of 52 patients, since the number of new infections in the participating hospitals decreased greatly. We randomized 52 patients for treatment with Triazavirin (n = 26) or a placebo (n = 26). We found no differences in the time to clinical improvement (median, 7 d versus 12 d; risk ratio (RR), 2.0; 95% confidence interval (CI), 0.7-5.6; p = 0.2), with clinical improvement occurring in ten patients in the Triazavirin group and six patients in the placebo group (38.5% versus 23.1%; RR, 2.1; 95% CI, 0.6-7.0; p = 0.2). All components of the primary outcome normalized within 28 d, with the exception of absorption of pulmonary infection (Triazavirin 50.0%, placebo 26.1%). Patients in the Triazavirin group used less frequent concomitant therapies for respiratory, cardiac, renal, hepatic, or coagulation supports. Although no statistically significant evidence was found to indicate that Triazavirin benefits COVID-19 patients, our observations indicated possible benefits from its use to treat COVID-19 due to its antiviral effects. Further study is required for confirmation.

7.
Engineering (Beijing) ; 6(10): 1199-1204, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-624244

RESUMO

The coronavirus disease 2019 (COVID-19), a pneumonia caused by a novel coronavirus, was reported in December 2019. COVID-19 is highly contagious and has rapidly developed from a regional epidemic into a global pandemic. As yet, no effective drugs have been found to treat this virus. This study, an ongoing multicenter and blind randomized controlled trial (RCT), is being conducted at ten study sites in Heilongjiang Province, China, to investigate the efficacy and safety of Triazavirin (TZV) versus its placebo in COVID-19 patients. A total of 240 participants with COVID-19 are scheduled to be enrolled in this trial. Participants with positive tests of throat swab virus nucleic acid are randomized (1:1) into two groups: standard therapy plus TZV or standard therapy plus placebo for a 7-day treatment with a 21-day follow-up. The primary outcome is the time to clinical improvement of the subjects. Secondary outcomes include clinical improvement rate, time to alleviation of fever, mean time and proportion of obvious inflammatory absorption in the lung, conversion rate of repeated negative virus nucleic acid tests, mortality rate, and conversion rate to severe and critically severe patients. Adverse events, serious adverse events, liver function, kidney function, and concurrent treatments will be monitored and recorded throughout the trial. The results of this trial should provide evidence-based recommendations to clinicians for the treatment of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA